Poisson bialgebras

نویسندگان

  • Xiang Ni
  • Chengming Bai
چکیده

Related Articles Representations of some quantum tori Lie subalgebras J. Math. Phys. 54, 032302 (2013) The Poincaré algebra in rank 3 simple Lie algebras J. Math. Phys. 54, 023508 (2013) Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group J. Math. Phys. 54, 022501 (2013) Localization in abelian Chern-Simons theory J. Math. Phys. 54, 023507 (2013) Symmetry classification of variable coefficient cubic-quintic nonlinear Schrödinger equations J. Math. Phys. 54, 023502 (2013)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-bialgebras and Dynamical R-matrices

We study the relationship between general dynamical Poisson groupoids and Lie quasi-bialgebras. For a class of Lie quasi-bialgebras G naturally compatible with a reductive decomposition , we extend the description of the moduli space of classical dynamical r-matrices of Etingof and Schiffmann. We construct, in each gauge orbit, an explicit analytic representative l can. We translate the notion ...

متن کامل

Poisson-Lie T-Duality and Bianchi Type Algebras

All Bianchi bialgebras have been obtained. By introducing a non-degenerate adjoint invariant inner product over these bialgebras the associated Drinfeld doubles have been constructed, then by calculating the coupling matrices for these bialgebras several σ-models with Poisson-Lie symmetry have been obtained. Two simple examples as prototypes of Poisson-Lie dual models have been given. E-mail: j...

متن کامل

Braidings and Quantizations over bialgebras

We describe braidings and quantizations in monoidal categories over bialgebras and group algebras of compact Lie groups. We introduce a relative variant of a braiding and a quantization more suitable in quantum problems. To describe quantizations we introduce non-linear cohomologies and show their relations with Hochschild cohomologies and Poisson structures. 0.Introduction. In this paper we co...

متن کامل

Lie Bialgebras of Complex Type and Associated Poisson Lie Groups

In this work we study a particular class of Lie bialgebras arising from Hermitian structures on Lie algebras such that the metric is ad-invariant. We will refer to them as Lie bialgebras of complex type. These give rise to Poisson Lie groups G whose corresponding duals G∗ are complex Lie groups. We also prove that a Hermitian structure on g with ad-invariant metric induces a structure of the sa...

متن کامل

Lie bialgebra quantizations of the oscillator algebra and their universal R – matrices

All coboundary Lie bialgebras and their corresponding Poisson–Lie structures are constructed for the oscillator algebra generated by {N,A+, A−,M}. Quantum oscillator algebras are derived from these bialgebras by using the Lyakhovsky and Mudrov formalism and, for some cases, quantizations at both algebra and group levels are obtained, including their universal R–matrices.

متن کامل

Bigèbres Quasi-lie Et Boucles De Lie

In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondance between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). Résumé : Dans ce travail, nous définissons les quasi-groupes de Lie quasi-Poisson, objets duaux des groupes de Lie quasi-Poisson et nous établissons une corresponda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013